HDAC4 controls histone methylation in response to elevated cardiac load.
نویسندگان
چکیده
In patients with heart failure, reactivation of a fetal gene program, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), is a hallmark for maladaptive remodeling of the LV. The mechanisms that regulate this reactivation are incompletely understood. Histone acetylation and methylation affect the conformation of chromatin, which in turn governs the accessibility of DNA for transcription factors. Using human LV myocardium, we found that, despite nuclear export of histone deacetylase 4 (HDAC4), upregulation of ANP and BNP in failing hearts did not require increased histone acetylation in the promoter regions of these genes. In contrast, di- and trimethylation of lysine 9 of histone 3 (H3K9) and binding of heterochromatin protein 1 (HP1) in the promoter regions of these genes were substantially reduced. In isolated working murine hearts, an acute increase of cardiac preload induced HDAC4 nuclear export, H3K9 demethylation, HP1 dissociation from the promoter region, and activation of the ANP gene. These processes were reversed in hearts with myocyte-specific deletion of Hdac4. We conclude that HDAC4 plays a central role for rapid modifications of histone methylation in response to variations in cardiac load and may represent a target for pharmacological interventions to prevent maladaptive remodeling in patients with heart failure.
منابع مشابه
The deacetylase HDAC4 controls myocyte enhancing factor-2-dependent structural gene expression in response to neural activity.
Histone deacetylase 4 (HDAC4) binds and inhibits activation of the critical muscle transcription factor myocyte enhancer factor-2 (MEF2). However, the physiological significance of the HDAC4-MEF2 complex in skeletal muscle has not been established. Here we show that in skeletal muscle, HDAC4 is a critical modulator of MEF2-dependent structural and contractile gene expression in response to neur...
متن کاملCKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A.
BACKGROUND Sustained cardiac pressure overload-induced hypertrophy and pathological remodeling frequently leads to heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) has been identified to be an important regulator of cell proliferation, differentiation, and apoptosis. However, the physiological role of CKIP-1 in the heart is unknown. METHODS AND RESULTS The results of echocardiogr...
متن کاملA Redox-Dependent Pathway for Regulating Class II HDACs and Cardiac Hypertrophy
Thioredoxin 1 (Trx1) facilitates the reduction of signaling molecules and transcription factors by cysteine thiol-disulfide exchange, thereby regulating cell growth and death. Here we studied the molecular mechanism by which Trx1 attenuates cardiac hypertrophy. Trx1 upregulates DnaJb5, a heat shock protein 40, and forms a multiple-protein complex with DnaJb5 and class II histone deacetylases (H...
متن کاملHistone Deacetylase 4 Controls Chondrocyte Hypertrophy during Skeletogenesis
Histone deacetylases (HDACs) modulate cell growth and differentiation by governing chromatin structure and repressing the activity of specific transcription factors. We showed previously that HDAC9 acts as a negative regulator of cardiomyocyte hypertrophy and skeletal muscle differentiation. Here we report that HDAC4, which is expressed in prehypertrophic chondrocytes, regulates chondrocyte hyp...
متن کاملSarcoplasmic reticulum Ca2+‐induced Ca2+ release regulates class IIa HDAC localization in mouse embryonic cardiomyocytes
In embryonic cardiomyocytes, sarcoplasmic reticulum (SR)-derived Ca2+ release is required to induce Ca2+ oscillations for contraction and to control cardiac development through Ca2+ -activated pathways. Here, our aim was to study how SR Ca2+ release regulates cytosolic and nuclear Ca2+ distribution and the subsequent effects on the Ca2+ -dependent localization of class IIa histone deacetylases ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 123 3 شماره
صفحات -
تاریخ انتشار 2013